RD-A223 £33

ESTIMATION FOR DIRICHLET MIXED MODELS

BY

i Accession For
NTIS GRAgT
DTIC TaB
Unannounceq

STEVE LEEDS and ALAN E. GELFAND

TECHNICAL REPORT NO. 428

JUStifiCation____Ez____

MAY 19, 1990 By

| Distribution/

Avai%gbi;{EX“Codes
]Avail and/or

Dist Special

Prepared Under Contract

NO0014-89-J-1627 (NR-042-267) A./ | {

For the Office of Naval Research

—

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA



ESTIMATION FOR DIRICHLET MIXED MODELS

Steve Leeds and Alan E. Gelfund

ABSTRACT . 1

Dmch]et mixed models find wide application.s; E;stxm:monlls usually achieved throuah the
method of moments. llere we present an iterative’ h\ brid algonthm for obtauunn th¢‘maximum
likelthood estimate employing both modified Newton-Raphson and E-Miméthods. This suc- ¢
cessful MLE algorithm cnables calculation of a jackknife MLE. Simulation companson of the
three estimatcs is provided. The MLE substantially improves upon the moments estimator par-
ticularly with increasing du'nensxon( The ).ukl\mft, MLE in turn offers’dramatic improvement
over the MLE. 1 /
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1. INTRODUCTION et

TR o’
Mixture distributions afford a flexible. rich class of models. A general definition of a mixture
distribution which appears in Evenitt and Hand (1981) goes as follows:

Let g(x {0) be a d-dimensional probability density function with respect to some mecasure p
on a m-dimensional parameter vector 0 and let H( 0 ) be a2 m-dimensional cumulative distribution
function. Then

fx) = fg &x16) dH(O) (1.1
is called a mixture density. /4 is called the mixing distribution. If # is discrete and assigns positive
probabitity to only a finite number of points (6,:i = 1, ..., ¢) then we have a finite mixture where

¢
fx) = Z H( 0;) + g(x|6) (1.2)

Throughout the literature on mixture distributions the goal has been to estimate /{ assuming
a parametric form g. Finite mixtures datc back to Pearson (1894 who attempted to estimate the
five parameters in a mixture of two normal distributions. Detailed discussions of mixtures can
be found in Titicnngton. et al. (1985) and Everitt and Hand (19%1).

Identifiability of the mixture model is 4 crucial issue. Tcicher (1961.1963) was the first to
give a definitive answer to this problem. By definition, a class D of mixturcs is said to be iden-
tifiable if and only if for all flx) & D the equality a.c. u of the two representations:

Jo &x10)dH (0) = jg g(x|6) dH(0) (1.9)
implics that /°(0) = H(0).
We will assume that H itsclf is from a paramectric family indexed by a and that the goal is
to estimate a based on obscrvations, x, from
fix|a) = J'@ g2(x)0) - dH(0|a) (1.5)

Discrete f{x | @) are morc commonly referred to as compound distributions.  Here we will
consider X to be a vector of counts and 0 (which will be a vector within the unit simplex) will




characterize the probabilities that a particular count within the A-vector will be incremented.
Models for g include the multinomial distribution having density

n' X, k & :
8y (X) Xg, ey Xp) = o, Ix,=n, 60 =1 (1.6)
Tl xi! i=1 i=1 =4
i=1
and the negative-multinomial distribution, having density
(n+ E x; = 1)
F=1 k=1 x k=1, k—1 .
80 Xy Xgy oy Xp =) = - I_] OjJ (1 - 3: Oj) , § OJ- <1 (1.7)
(=1 nx! /7! J=1 J=1
J=1

In both the multinomial and negative multinomial cases the random vanable is defined by
a particular stopping rule on the generalized Bernoulli trials. For the multinomial case the ran-
dom variable is observed when n generalized Bernoulli trials are completed.  For the negative
multinomial casc the random varable is observed when a predesignated 4™ cell fills to size n .
More broadly for a specified stopping rule on the generalized Bernoulli trials we say that the re-
sulting random vector, X, of observed counts for the & cells, follows a general occupancy distrib-
ution. Examples of other potentially interesting stopping rules are : (1) Sample untidl both
X, zrand X, 2 r,, (2)Sample until cither X, = r, or X, = r,. Generally, if X is an outcome
in the sample spuce of a general occupancy model

k
glx) = c(B)Alx) M 6 (1.8)

i=1

The natural conjugatc choice for H in this context would be the Dirichict distribution.

k
(L ay
=1 kZla -1 k10 @, =1 .
@ =———(m o TN -"E 6™ w0 iz k(9
fl M) = i= '

i=1

The assumption of the mixing distribution being conjugate buys simplicity of form. But in addi-
tion Dalal and Hall (1983) point out that arbitrary mixture distributions can be satisfactorily ap-
proximated by considering mixtures of natural conjugate distributions. In the present case we
obtain the Dirichlet (or compound) - multinomial distribution

k k—1 k—1
M(La) (OTeg+a)ln— T x+ay)

n! i=1 j=1 j=1

fa(x],...,xk) = P z . (llO)
nx! 1nrl) Fn+ T a)
=1 i=1 1=1
k0
n— X x —1
k—1% =1 iz
n ne+n n (a, + 1)
_ n i=1 r=0 r=0
T Tk n—1
n X‘-! n (ﬂ] + (12 + o+ ak + r)
=1 r=o0

and the Dirchlet (or compound) - negative Multinomial Distribution




k—1 k k—1
(n+ T x— 1) T(Xa) (0T +onln+ ay

_ j=1 i=1 i=1
So Xy X)) = = - R z (1.1D
n—-N0'n x;! I Ia) e+ T x+ % a)
i= i=1 Ji= i=1
k=1 k—1x 71 n—1
R | I INCTRO RS | RO
j: i=1 ,:0 r=20
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k—1
(n= 1! M X nt ¥ x -1
J=1 J=1 )
n (0, oy + - +a,+7r)
r=0

Extension to a Dinchlet general occupancy distribution is apparent.

With regard to identifiability let ©Q be the collection of all possible distinct events in the
sample space and let A(QQ) be the cardinality of Q . For any & dimensional a-vector we can
construct N(Q) equations which describe the probabilities for all simple events in Q. Since all
of the probabilities must sum to 1 we will have N(£2) — | independent equations and & unknowns.
If we have at least as many cquations as we have unknowns, we cannot choose any other a-vector
that will gencrate the samc probabilitics. Therefore, the condition for an identifiable Dirichlet
mixture will be

N -1 -k 20 (1.12)

Hence, the Dirichlet negative multinomial is al\\:a,\'s identifiable, while the Dirichlet multinomial
is, provided n > 1.

Applications of these two mixture models are extensive in the literature. In particular sce
Leckenby and Kishi (1984), Rust and Leonc (1984), Kalwani (1980), and Mosimann (1962,1963).

2. ESTIMATION APPROACHES

Method of moments estimation is most commonly used in the Dirichlet mixed models (sec
e.g. Mosimann (1962.1963), Johnson and Kotz (1969) ). Maximum likelihood estimation re-
quires a difficult numerical maximization and has been studied primarnily in the Beta mixed (k=2)
case. (See e.g. Griffiths (1973), Smith (1983). Williams (1975) ). Computation of MLE’s 1s the
primary issue of section 3. Effective computation of the MLE enablcs us to propose a jackknifed
MLE as a third choice. Mean square error behavior of the jackknife estimator is extremely
promising.

We first review the method of moments estimator. First and second moments associated with
the Dirichlct multinomial in (1.9) are

= g2
EX;=n Sa @.n
=nT 20 ia i - 2
VarX; l (n o (1 Zu) ) (2.2)
Cov(X;, X, /) = n=-a (n—ai -a———’:' ) 2.3)
ov( Ay X ) 1 + Xa Ya Ta )

To obtain the moments estimates we would have the relationship na, ; Ta = X. Since there 1s
no constraint on the @, s , we need an extra cquation There is no unique criteria to determine
this extra equation and thercfore can be considered an ad hoc choice.




Mosimann (1962) noticed that the covariance structure for the Dirichlet-multinomial is just

: . ) . a a
a constant times the covariance matrix for a multinomial with parameters ( ‘_—' Z—‘ ).
Ia a
= . €
Zpu €=My, np, ) (24)
where = c= 12 a
P Ta 1 + Xa
Using this relationship the gencralized variance would be [T, = 71" - [Z,0 . In order

to avoid singular matrices, (k-[) terms of the covariance matrix are used.

For a sample ( X,,, ..., X, ) t=1,..,m (i.c. m replications) from this distribution, Mosimann
showed that the MME’s are of the form

G = T ok (29)
n(ic - b
Ap— DI k
ck=1_ epml — lﬁ‘lk—] (2.6)
vl (n%(n-"x F)n
j=1 j=1
Here [S] is the determinant of the sample covanance matrix
Y
S‘.‘,=5‘.2= ':n_(f“_r_n_x‘)_ i=1,.. k-1 2.7
(=1
(x; — XMx, - X))
Sy= T LT T = k- (2.8)

=1

In order for a to be feasible, 1 < ¢ < n. If this condition is not satisficd then we will say that
the MMLE does not exist for this mixture case.

First and sccond moments associated with the Dirichlet negative multinomial in (1.11) are

EX; = n—21 oo > (2.9
J a, - 1
+a, -1 o a +a, 1
Varkj=— k=" (nL kg 52 (2.10)
a, — 2 Ay -1 ap — 1
n+a,—1 q; a;-
Cov(X;, X.+) = k L L), > 2 2.11
01X, X; ) o -2 uk—luk-—l) ay (2.11)

Gt = k=1

Again Mosimann (1963) exploited the covariance structure of the negative multinomial and
Dirichlet-negative multinomial by obscrving that

= .Y ’ ’
ZpNM € NG, )
where p;=a;, j=1,. k-1, Pr=a; -1
to yield
~ X + .
a,=7’i:l-_—cl)— =1 k=1 2.12)




~ 2’\ + —_
q = razl) (2.13)
c—1

For some reason Mosimann did not present the generalized variance ratio estimate of ¢ for the
DXNM case. Instcad he chose ¢ by ignoring the overall covariance structure and equated
TREpay) = ¢ TR(E N2y (2.14)

An alternative estimate consistent with the Dirichlet Multinomial approach is one that accounts
for the full covariance structure. Thercfore we use

AL S
Ck L. Iﬂn,\ul - - ISlk‘] (215)
IZxwl iz (n+ 5 F)n
i=1 i=1

We should remember that this choice of estimate is ad hoc. However, we will call the resulting
estimate the MME, even though it is not uniquely determined. Again, if ¢ < 1 we will say that
the MME does not exist.

There has been no study up to this time which evaluates the performance of these estimates
in both the DM and DNM cases.  Since the estimates in both cases arc rational functions of
consistent estimates (DNM case a, > 2 ), they too are consistent (Slutsky’s thcorem). Results
of simulation studies will be presented in section 4.

With regard to maximum likelihood estimation for multinomial and negative multinomial
distributions, MLE’s and MMLE's are the same. In the mixture case, MLE’s cannot be written
out in closed form. In order to proceed with maximum likelihood estimation it is sometimes
morc convenicnt to write the compound distribution of interest under a particular
reparametrization. The reasoning behind this is that we will ultimately need an iterative procedure
to obtain the MLE. If we can choose a parametrization such that the parameter estimates do not
“vary much in the region of best-fitting models’, then we will have a more efficient iterative pro-
cedure. These new paramcters are called stable parameters. Ross (1970) discusses maximum
likelihood in this context.

In the Dirichlet multinomial model we reparametrize to

L

n— ¥ x—1
k—1x ~1 1= k—1
n 1m(u+r n (1—- T pu+r)
_ n i=1 r=0 r=9 ji=1
fg,O(l{)-(x’ ,..,xk} g
’ n(+roy
r=90
0 <y <, i=1.. k-1, 06>0 (2.16)
=% ;= =_1 5
where W= 5g i=1..k—1and O—Z—a (2.17)

Under this parametrization y, can be thought of as the mean paramecter of the original p, , and 0
can be thought of as a shape parameter. Griffiths (1973) scems to have been the first to use this
representation for the (k= 2) case. Under this paramctrization , f, g(x) is exactly a multinomial

AT
with parameters ( 4, ..., 1 = Z p ). Thus departures from 0 = 0 suggest departures from
pure multinomial variation. 0 in this sctting is somctimes called an overdispersion parameter.
From expression (2.4) we notice that
- no+1

€T To+ (2.18)




sowhenG =0, ¢c= 1.

Skellam (1948) examined the log of expression (2.26) for the case of (k=2) and took the
natural ‘denivative log likelihood’ approach. He proposed a recursive procedure through the de-
rivative log gamma or digamma funtion. Since the digamma function must be approximated. this
procedure for the gencral case is not appealing.

Using the reparametrization, (2.17). the Dirichlet negative multinomial becomes

k=—1% 71 n—1 k—1
+k;1 | O 0+ M- 3 pt+r)
n T ox— i=1 r=0 =0 i=1
fooo@=(" 5 ) —— —
n-1 nt T x —1
1=
Il (1+r0)
r=90
0 <y <1, 1=1L.k=-1, 6>0 (2.19)

When 6 = 0 we have a pure negative multinomial distribution, so 0 again conveys departures
from negative multinomial variation. In this case, duc 10 the constraint on the sccond moments
(ic.a, >2), 0<0¢<0.5 and
k—1
1= T+ (=10
J=0
k=
1- 3 W~ 26
J=1

The likelihood system of cquations in the DM ( y,, ..., p, — , 0 ) case becomes

m X, 1 m Xy 1
oL —L__ 3" ] =0  i=1l.. k-1
C]J." =1 r=0 pi-’-ro t=1 r=0 1 - Z]“j+r0
J=1
A m k—1%, —1 m Xy —1
L - ¥ s —r - 3% o
O =iz =Mt = = 1= % w+r
i=1
m n 1

I=1r=0 1+

The likelihood system of cquations in the DNM (p, ..., u, |, 0 ) case becomes

N x, —1 n, —1
¢ -3y L -3 - 0 i=l.k-1
Ol (=1 r=0 “i+’0 I=1r=0 ] - z]“j+'0
j:
q m k—1%, ~1 m n "l
=1i=1 r=0 W 1=1r=0] _ o+
-, J=1
k1
nt X ox; -
Ty r_ g (2.21)
=1 r=0 1+ -

It is easily scen that for both (2.20) and (2.21) the likelihood cquations do not yield a solution in
closed form ; an iterative procedure is required. Once MLE’s for (4, 0) are obtained, we can casily




convert them to MLE's for a. For both distributional models we can obtain straichtforward
expressions for Fisher’s information matrix by taking a second denvative of the likelihood. See
Leeds (1987) for details. It is important to note that unequal 7, can be used in maximum likeli-
hood estimation, but it is unclear how to proceed for moments estimation. Ad hoc weighting
proccdures have been suggested for the (k= 2) case (see e.g. Kleinman (1970) ). To allow com-
parisons we will take n, equal in our simulation studies.

We also propose jackknifing of the MLE. The jackknifc idea dates back to Quenouille
(1956) and 1s thoroughly discussed in Efron (1982). We consider the jackknife procedure for two
purposes.  First, we hope to obtain a bias reduction. hence, a possibly better MSE performing
estimator (sce Schucany, et al. 1971). Second, we wish to study the performance of the jackknife
estimate for possibie confidence interval devolopment.

We recall that giver a sample of size m and a point estimate @ of unknown paramcter &,
the jackknife constructs what are known as “pscudovalues” which are defined by the relationship

A

O =mby _(m= Dby i=12,...m (2.22)

A "

where @, is the original cstimate with all observations included and @, is the computed value
of the estimate with the  obscrvation removed. We would then compute the avcrage and
standard deviation for the set of pseudovalues and call them @ and s. respectively. Here

*

m *
P = T @ (2.23)

1
moi=y
m * x
T (b — 7Y
2 i=1

Sfe = - (2.24)
m—1

Our jackknife vanance estimate of Var (1, ) (possibly of Var (¢°)) would be s = m™1s? and
we would then construct the confidence set

A
Successful jackknifing depends upon successful computation of pseudovalues emphasizing

the nced for an cffective iterative MLE procedure.  We develop such a procedure in the next
section.




3.ITERATIVE PROCEDURES FOR MLE'S

In this section we investigate in detail computational methods for obtaining the MLE. When
maximizing the log likelihood function it was proposed that we solve the likelihood system.
e
ey
¢
¢0
Recalling that the solution to these equations (if it exists) can not be represented in closed form
for the mixture cascs discussed, numecrical methods sometimes referred to as “root finders” must

be considered.  The most common methods for determining the roots for a svstem of nonlinear
equations arc the Newton-Raphson Method (NR) and the Method of Scoring (MS).

0 i=1,.. k-1

= 0

If we let & = (b, ..., 9,) denote the vector parameter and () be the log likelihood
evaluated at @ |, then the NR algorithm at iteration (r+ 1) is defined by

Ut = ¢ = 'x'r[ng)(‘l)(’))]_ 1'[),Q(«b(’)), r=0.12... (3.1
and the MS algorithm is defined by

"D = oM~y (@) T D@y, r=012,.. (3.2)

In both cases the non negative constant y, can be thought of as a damping term ( v, = | is the
usual version ). D and D? are differential operators representing generalized first and second de-
rivatives respectively, and /(4 is Fisher's information matrix. We consider only the NR algo-
rithm since D>Z(d") is available in closed form. The MS algorithm requires the numerical
computation of an cxpected matrix at each stage. In fact, we use a modified Newton Raphson
approach to avoid the required matnix inversion in (3.1) at each iteration. There are many dif-
ferent versions of the modified Newton-Raphson method with the least attention given to the
simplest version. This version can be constructed by computing only the second denvatives on
each coordinate separately and setting the mixed partials to zero.

Let
Hy=Dl2@) i=12 .k (3.3)
Hy=0, =) =1,k
Now
H V= (D)) = —21—-— i=12.. .k (34
“— L(D)
cd;
H'=o0, i%j =1,k
yielding the system of cquations
55»1 @

d)(lr+ 1) - d)(lr'f' 1y _

42 — &
C Z)((b) d) - (D
el




"(i L)

r cWw,,

Q)L+l)= q)2r+l)___n_k_____ _ (3.5)
——C,’ L)) ="

- <
by

which can be thought of as k versions of the univariate Newton-Raphson method. This diagonal
version, where cquations would be updated as each new coordinate becomes available. will be
referred to as the Modified Newton Raphson (MNR) algonthm. We remark that (1) Conver-
gence of the NR or MNR algorithm is typically dependent on the starting solution © . (2)
When MNR converges, it converges quickly. (33 The MXNR algorithm may not converge to the
root ®* even when started ‘close’ to ®° . (4) For what follows we take the parametrization
¢ = (W), 1y - B, =, 0) in which case the MNR algonthm becomes

Ee L)
rdn < - —?-— L i1k (3.6)
('2 L) b=
CH;
0"t = g - O | . (3.7)
L@y =
an2
6

For the Dirichlet multinomial model. first partials are given in (2.19) with

5 m X, ~1 1 m Xu 1 1
j‘g(Q’)= - X ¥ _—_7_ T z =
cy; =1 r=0 (y; + rl) 1=1r=0 () =5 w + ,0)2
62 m k—1%; —1 r2 m Xu ! = I’2
—'—2—.‘1’(d>)=— X 3z — " DI X =
co0 (=1i=1 r=0 (y; + 19) 1=1r=0 (] - E W + ro)’
m 7 ) ?'2 /=1
+ ¥ £ — (3.8)
=1 r=0 (1 + A0)
For the Dirichlet negative multinomial model, first partials arc given in (2.20) with
52 m Xg T i m N7l 1
T—2$(d))= - X z ——_2'" b z )
Cl; (=1 r=0 (p,i+r0) =1 r=0 (1- % pj+'0)2
j=1
A2 m k—1% 1 2 m n Tl 2
ed)=-3 31 . ——-3 :x =
éo (=1i=1 =0 (; + r9) (=10=0 () ij+,0)2
- J=1
k1
n+ X x, 1
m iz r2
+ X h —_— (3.9

(=1 r=0 (1 + +0)?

A major problem with the NR or MNR algorithm is the need for a good starting solution.
The MME would scem 1o be a reasonable starting solution. but as mentioned before, therc are
many cascs where we cannot compute a moments estimate. Even if we can compute the MME,
what recourse do we have if this starting solution causes the algorithm to diverge?

The EM algorithm (Dempster, ct al., (1977) ) offers an alternative approach The “algorithm’
was onginally proposcd for the treatment of incomplete data. but can accommodate many other




situations. The EM algorithm gencrates from some stanting solution 7 a sequence {44 of cs-
timates in the following steps

E-STEP:  Evaluate E(Z(d)] 3, &) = O, 07 (3.10)
M-STEP: Find @ = &' "D 10 maximize Q(@, d") (3.11)

One of the more appealing propertics of the EM algorithm is that under mild conditions (see
e.g. Wu, 1983) cach succesive iterate increases the likelihood tunction.

When the complete data likelihood comes from a regular exponential family represented by
JUIP) = b)Y exp{b - 1)} ia(b) (3.13)

where 1())T denotes a (k x 1) ‘complete data” sufficient statistic, the E and M steps take on a more
exphcit form.

E-STEP : Estimate the complete data sufficient statistic by finding

= Euiy | x, o1 (3.14)
M-STEP : Determine @71 1 as the solution of the cquations
E(p)1d) = (3.15)

The M-STEP is a maximization step because this condition must hold when obtaining a maxi-
mum under a regular exponential family modcl. Cycling back and forth between E and M steps
should yield the MLE when and if the nerative sequence stabilizes. At the MLE &7, the following
rclationship holds:

EG(y) | x, @) = E(() |9 (3.16)

This equality of conditional to unconditional expectation at the MLE has also been noticed by
other authers (Baum, et al., 1970, Orchard and Woodbury, 1972, Sundberg, 1974).

Under Dirichlet mixture we have the ‘incomplete data” X = {(x, ..., x,)} or {(x, ..., x,_ )}
as the case may be, and the ‘complete data’” ¥ = {(x, ..., x,, p, ..., p)}- Thus

Jold) = Ax.pld®)=fxlp) D(pla) (3.17)

where fl x [ p) represents the multinomial or negative multinomial and D( p| @) represents the
Dirichlct distribution. Hence the distnbution f{3 | d) is an exponential family distribution. If we

now sample (x,), ..., x,), (= 1,2,...,m we have
m
L(q)) =1 [ﬂx”, cen Xtk I/"”, ’plk) * D(pl, e Pp 'Q]‘ sy Qk)l (318)
=1
k
I'( X a)
m m k a —1 k m ) i= -—-m
=IO Rx.p)l 1T Opg ]-expl £ o T logpy} / (——)
=1 t=1i=} =1 =1 n g,
i=1

where @ = (a, ..., q,) and 1(}) = (p) = § log p,, i=1,.. .,k

=1

It is interesting to note that (p) is always the same under Dirichlet mixture and thus does
not depend on the original distribution being mixed.

To put together the EE and M steps we must compute

E(t(p) | 9) = E( T loapyla) and E((p)|x,®) = EC T logpylx,. 0) (3.19)

=1 (=1

10




3

Now [( T logp;la) = S Elogpyla) = mE(logpy|a)

(=1 =1
.. . o (1 - plz)j . . .
Using the expansion logp,; = 3 f after sorne manipulation vields
i=1
m oy J Ta-ag+s-—1
E(Y logp.lay= —m- T —- = d 3.20
(L logpila) e ey (3.20)

In order to evaluate E( X v logp, 1x,, @) we notice that the distribution of p|x is also

=
Dirchlet. Similar calculations to that vielding (3.20) produces
v -y +s— 1
T+ s—1

m
E(X logp;lx.a)= - (3:21)

o>
X
=1 ==

Il ™M3

J
Lo
Vi os=
Lk

where y{1) = X; + @, i

Obscrving (3.15) and (3.20) we sec that in our case the M-step does not admit a close form sol-
ution. The M-step would have to be solved iteratively within each iteration. Instcad we use the
necessary condition (3.16). Solving the stable point problem in (3.16) will be called the modified
EM algonithm (or MEM algorithm). Solving the EM algorithm will solve (3.16). However,
solving (3.16) docs not necessarily provide the solution generated by the EM algorithm. unless the
solution to (3.16) is unique. In general under Dinchlet mixture the MEM equations (3.16) are

m oC . .
T TEQ-pYlxe —El-pYla} =0 i=1,.4k
1=1j=1

When using the EM algorithm to obtain an exact solution for the MLE it is well known that
convergence to a solution is extremely slow. However, Redner and Walker (1984) point out that
a quick climbing of the likelihood surface usually occurs in only a few itcradons. We hope to
retain this feature with our proposed MEM algorithm.

By a quick inspection we can sec that § = 0 is a solution to the MEM cquations in both
cases. However, this result 1s never achieved unless 6 = 0 is used as a starting solution. Explicit
solutions are not available and therefore a root finding mcthod such as the MNR method can be
used here. The infinite suinmations can be truncated to obtain approximate solutions.

To solve the MIEM cquations we would use the (o, 0) paramctrization and construct the
MNXNR systern in the same way it was constructed for the orginal likelihood equations. In this case

—.% ZL(d) is replaced by expression (3.16) vielding the system

p§,+1) _ “'(,) _ "E(t(y) Ix, ®) — E(() | D) ' | P= Lo k-1
== G | x, @) = EuG) [d)] =@
o
gr+ 1 = ol = E(() | x. ) — EL(y) | D) (3.27
?%IE(IO')IX. ®) - E(() ()] b= 07
To compute derivatives we use the fact that
_a_ i’,‘l h ((b) = _P/._ exp! <" lov & (([))}
i =, e Pz RS

11




=exp! T logh(®)} - [T £ — ] = [0 Ad)]] £ e
s=1 SN E Ay (D) l:=1 ’ ls=1 Ao (D) ]

We can substitute the appropnate expressions for the denivative in the MNR svstem because the
MEM cquations are just functions of products of this type. For efficient computation of all
terms, recurrence relationships for the product functions and derivatives can be created for in-
creasing J.

Finally we state our MLE algorithm. It can be thought of as a hybrid algorithm gven by the
following steps:

1) Choose a starting solution @0, [f @,,,,; cxists then &0 = &y,,,.. If O'* does not exist then
starting solution (g, €, ..., €, _I]T) 1s uscd.

2) Iterate using the MNR equations in (3.7) with derivatives given by
expression (3.8) or (3.9) .

3a) If step 2 yields a converging sequence {®,,} = ®° then &y = ",

3b) If step 2 diverges then we run about 20 MEM iterations starting at the
last iterate generated by the previous MEM run. If MEM is being run
for the first time then we can start at $@ MEM is intended to
point fuiled MNR starting solutions in the right direction. Return to step 2
after 20 MIEM iterations are completed.

In concluding this section we address the question of whether the proposed MLE algorithm
obtains the MLE. To do so we investigate the likelihood surface and ask the following questions:

A) lf%‘%— = 0, might we have obtained a minimum or saddie point?

B) If —cg“;/;— = 0 yields a maximum, is it a global maximum?

C) Is & unimodal?

For the & functions being considered, (C) can not be answered analytically in the general case.
Levin and Reeds (1977) have shown that if p, ... +H, —, arc known and 0 is unknown, then &
has at most one mode. This result suggests that urumodality may be preserved even if the p,’s
arc unknown.

Assuming that unimodality cannot be verificd, we must address case (B). the arrival at a local
maximum. The class of iterative algorithms.

oVt = o -t (&L =012 3.23
" = My, (m)lq’:dw r=0l, (3.23)

includes both MNR and MEM. Using (3.23) along with a Taylor expansion for £(d ¥ 1) at
® we obtain

L@ = p@ - (ELYT (Y- (EL 2
@) = 2@ - (ET -y (55 |¢=¢m (3.24)

If M, is positive (or negative) definite, then the iterative algorithm (3.30) is a descent (or ascent)
algorithm. For simplicity we will call this type of algonthm a monotone algorithm. Under a
monotone algorithm, the answer to (B) is yes. For the MNR algorithm, this requires that all
diagonal clements of M, arc positive.

It is interesting to note that the choice of reparametrization from a to (u, ) makes a dif-

ference in the shape of the likelihood and in terms of the behavior of the iterative algonthm. This
property reinforces the use of “stable paramcters” as justificd in a slightly different manner by Ross
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(1970).  More precisely, we notice that the & function for both Dinichlet multinomial and
Dirichlet negative multinomial has the following form under the (ay, ..., @,) parametrization

£ = clx)+ }:Z);‘, log(a; + r) — T3 log(Za + r)
i rr

If we now look at

_5_2(_'-__‘(@_ i=12 .k
éa,-z
we have
-2,
LS Gl SR S oMU B . S R
éo? CiT @+t T (Za+ )

From this relation (for all 1) it is unclear what the likelihood surface might look like and whether
we would obtain a monotone algorithm. Figure 1 illustrates the bchavior of the & function for
k=2, m= 10, n= 40 based upon the sample x,, ..., x,, = 23,31,1,1,3,34,17,32,31 8.

LOG LIKELIHOOD SURPACE

LOGL

~184.01 -
-241.59 | F 17

-289.18 -

-336.76 -
9.50

Figure 1. Log Likelihood function under the original parametrization

Under the (y,, ..., 4, -, 0) parametrization < has the form
k—1
L = ox) + LT log; + r0) — T Z log(l = X w +r0) — £ log(l + r0)
1 ir rr j=1 tr

Now if we examine the sccond order partial denivatives on the p, coordinates
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LA 3.3 S E S S >0 i=1,.. .k
R
)=

so the log likelihood is concave in all u directions. Figure 2 illustrates this behavior and we can
also see that that & appears smoother under the (4, 0) parametrization. To assess whether the
F(~ &)

- >0

iterative algorithm is monotone we need only examine whether =5
¢

LOG LIKELIHOQD SURPACE

0.85

0.01

Figure 2. Log Likelihood function under the reparametrization

4. A SIMULATION STUDY

An extensive simulation study was undertaken 10 compare the method of moments estima-
tors, the MLE’s and the jackknifed MLE's (JMLE). Data was simulated using IMSL routines
GGAMR and GGUBS. Roughly 5000 replications were used. First, we compare MME's with
MLE’s. It is expected that the MLE will perform better, and in fact, this is case, often substan-
tially so. For both the DM and DNM case, the paramecters to vary are

k: dimension of the parameter space

m: the sample size

n: generalized Bernoulli trial stopping parameter
and a : the Dinchlet parameter vector

14




We present results for few of the & = 23,6, m = 10.40 and n = 40,60 cascs in the following ta-
bles. (See Leeds (1987 for additional simulation work). For each estimator under each speaifi-
cation we can compute (1) bias, (i) mean squared error, MSL, (1) quadratic expected loss using
information weighted loss, QEL. (iv) the exact covanance matrix, and (v) the inverse of Fisher's
information matnx. BIASM, MSEM, QELM are for the MMELE: BIAS, MSE, QEL are for the
MLE’s. Since we know the true @, we can compute the asymptotic covariance of the MLE’s
which is m ™1/ Ya) to comparc with the cxact covariance at the fixed m. This is of interest
since we do not know whether the MLE's for these Dinchlet mixed models are asymptotically
efficient. Generally, we can not verify the usual regulanity conditions (sece Lehmann (1980)).

In the last few tables we present simulation results again based on 5000 replications for a few
cases (k = 2) companng the JMLE with the MLE.

In summary :

(1) Small sample case m=10. For both DM and DNM cases, a feasible MME provided an ac-
curate starting solution for the MXNR algorithm. However, 6 — 0 or increasing k were more de-
pendent on MEM backup. When MME’s did not exist, the starting solution was chosen to be
1.
X )
This solution performed admirably when the MME did not exist. The asymptotic covariance
approximation is poor.

dJ(O) = (g,€,..., &,

(1) Large Sample casc m=40. For both DM and DNM compounds, the moments estimate was
always feasible and provided a good starting solution for the MNR algorithm. This comes as no
surprise since the MMUE's are consistent. However, if we were to receive a set of data with une-
qual n’s , we would not have a MME to start the MNR algorithm. The starting value 1 (1)
should suffice. Here the asymptotic covanance approximation seems more reasonable.

(iii) For the & = 2 case Shenton (1950) reports that the efficicncy of the MME to MLE's is at
least 70% . This result is not contradicted. If we happen to be in this case we do not lose much
by using the MME. However, for larger & there appears to be a rather dramatic reduction is ef-
ficiency of MME’s compared to MLE's.

(iv) JMLE’s performed exceptionally well in comparison to the MLE in terms of reducing mean
squared error.  This result is encouraging for the reason that the evaluation of the JMLE makes
the most use of the MLE algorithm to ensure the successful computation of all pseudo values,
and thus the JMLE itsclf. However, it should be mentioned that with frequent use of the MLE
algonithm, convergence may be a problem, especially in the small sample case. For instance, if
m = |0 we compute cach pscudo value on nine observations. This is a 10% reduction in the
amount of data considered. For the large sample casc this would not be so.
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DIRICHLET-MULTINOMIAL TABLLS

a, a, m n
1 1 10 40
Mecthod of Moments Maximum Likelthood  Fisher's Fisher's
Covariance Matnx Covanance Matnx  Information  Inverse
1.513510 1.057329  1.398952 (.991609  8.95} -6.21 215 149
1.057329 1.239158  0.991609 1.168164 -6.20 8.951 .149 .215
BIASM BIAS MSEM MSE
a, 0.414802 0.443557 1.685580 1.5956954
a, 0.400124 0.429745 1.399257 1.3528449
MSEM = 3.084837 MSE = 2.9483540
QELM = 24.835702 QLEL = 23.125809
a, a, m n
1 1 40 40
Mzthod of Moments Maximum Likelihood — Fisher's Fisher’'s
Covariance Matrix Covanance Matnx  Information  Inverse
0.074439 0.053271 0.068876 0.047896  35.802-24.8 .054.037
0.053721 0.073378 0.047896 0.067768 -24.83 35.80 .037 .054
BIASM BIAS MSEM MSE
a, 0.060176 0.065845 0.078060 0.0732114
a, 0.060324 0.066177 0.077017 0.0721478
MSEM = 0.155077 MSE = 0.145359
QLELM = 52.383275 QL = 52261335

1
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Method of Moments Maximum Likelthood  Fisher’s Fisher’s
Covariance Matnx Covanance Matnx  Information Inverse

1.469407 7.120741  1.240462 5880053  11.04-1.593 .027 .24
7.120741 50.092428  5.880053 40.67265  -1.59 11.04 1.244 8.617

BIASM BIAS MSEM MSE

a, 0.603724 0476951  1.834133 1.4679439

a, 3.684889 2981112 63.678252 49.5596842
MSEM = 65.512385 MSE = 51.027628
QELM = 28.428736 QEL = 26.017101

a, a, m n

1 5 40 40

Method of Moments Maximum Likelihood  Fisher's Fisher’s
Covarniance Matnx Covanance Matrix  Information  Inverse

0.122884 0.601518 0.092132 0.441677 44.16 -6.37 .068 0.311
0.60151% 4.082731 0.441677 3.162800 -6.374 1.384 311 2.155

BIASM BIAS MSEM MSE

Q 0.114245 0.085229  0.135936 0.0993%62

a, 0.655972 - 0.547638  4.553290 3.4627071
MSEM = 4.689226 MSE = 3.562103
QELM = 67.364333 QLL = 66.682778
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a, a a, m n
1 1 1 10 60
Method of Moments  Maximum Likelthood  Fisher's Fisher's

Covariance Matnx

Covanance Matnx  Information  Inverse

0.653 0.428 0.415
0.428 0.714 0.470
0.415 0.470 0.693

0.3350.188 0.187  11.13-3.789 0.138 .672
0.188 0.334 0.200 11.13 0.138
0.187 0.200 0.339 -3.789 11.13 .072 0.138

BIASM BIAS MSLEM MSE

a, 0.474866 0.242310 0.879144 0.3937210

a, 0.475535 0.240140 0.939910 0.3910328

a, 0.475880 0.247340 0.919547 0.4004014
MSEM = 2.738601 MSE = 1.186056
QELM = 62.345719 QECL = 45.055172

a, o a m n

1 1 1 40 60

Method of Moments
Covanance Matnx

Maximum Likelihood  Fisher's Fisher's
Covanance Matrix  Information  Inversc

0.056 0.032 0.032
0.032 0.056 0.033
0.032 0.033 0.058

a,
a,
as

0.042 0.022 0.022 44.52-15.16 .035 .0I8
0.022 0.040 0.022 44.52 .035
0.022 0.022 0.041 -15.16 44.52 .018 .035

BIASM BIAS MSEM MSE
0.079744 0.048335 0.062908 0.0446581
0.078848 0.048255 0.061938 0.0421660
0.078873 0.047966 0.063734 0.0437279

MSEM 0.188580 MSE

= 0.13055
QLM = 95803140 QCL

2
94.523415

U]
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a, q a, m n
1 3 5 10 60
Mecethod of Moments  Maximum Likelihood  Fisher's Fisher’s
Cavariance Matnx Covanance Matrix  Information  Inverse
0.938 2.293 3.884 0.461 1.063 1.815 11.5 -1.02  .164.308 .543
2.293 10.12 14.89 1.063 4.757 6.833 2.36 308 1.43 2.00
3.854 14.89 27.13 1.8156.833 1275 -1.02 895  .543 2.00 4.05
BIASM BIAS MSEM MSE
a, 0.622727 0.2970134  1.325775 0.54886S1
a, 2.055143 1.002653 14.342457 5.7623477
a, 3478274 1.721109 39.231529 15.715182
MSEM = 54899761 MSE = 22.026398
QELM = 66.288906 QLL = 56.062711
a, q; a, m n
1 3 5 40 60
Method of Moments  Maximum Likelthood Fisher's Fisher's
Covanance Matnx Covanance Matrix  {nformation Inverse
0.0650.134 0.232 0.049 0.098 0.171 459 -4.12 041 .077 .136
0.134 0.620 0.887 1.063 4.757 6.833 9.42 .077 .359 .501
0.232 0.887 1.674 1.8156.833 12.75 -4.12 3.58 136 .501 1.01
BIASM BIAS NSEM MSE
a, 0.098757 0.048925  0.074585 0.0510535
a, 0.327434 0.180411  0.726720 0.4933342
a, 0.544873 0.299283 1971414 1.3429237
MSEM = 2772719 MSE = 1.8873134
QELM =267.365122 QEL = 2659265317
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a, 6, a3 o, 05 G,

m n

10 60

Fisher's Information

11.89 -1.66 -1.66 -1.66 -1.66 -1.66
-1.66 11.89 -1.66 -1.66 -1.66 -1.66
-1.66 -1.66 11.89 -1.66 -1.66 -1.66
-1.66 -1.66 -1.66 11.89 -1.66 -1 66
-1.66 -1.66 -1.66 -1.66 11.89 -1.66
-1.66 -1.66 -1.66 -1.66 -1.66 11.89

Method of Moments
Covanance Structure

Information Inverse

107984
.1079¢4
107984
107984
.107984
107984

034179

.024179

Maximum Likelihood
Covanance Structure

0678
0732

0680
0695
1809

1.1084 .6072 .5839 .6386 .6566 .6053  .1865 .0721 .0670 .0718 .0730
6072 1.0835 .5656 .6144 .6305 .6134 0721 .1912 .0698 .0726 .0746 .
.5839 .5636 1.0680 .6068 .6242 .6028 .0670 .0698 .1858 .0715 .0717 0681
6386 .61 .6068 1.1713 .6543 .6308 .0718 .0726 .0715 .1880 .0702
6566 .6305 .6242 .6543 1.1769 .6602  .0730 .0746 .0717 .0702 .1904
6053 .6134 .6028 .6308 .6602 1.1105 .0678 .G732 .06S1 .0680 .0695
BIASM BIAS MSEM MSE
a, 1.078768 0.177409  2.292481 0.2179630
a, 1.088996 0.182866 2.389933 0.2245902
a, 1.077059 0.170849  2.248338 0.2150239
a, 1.082371 0.179794 2.236290 0.2203275
ag 1.093295 0.175182 2392863 0.2211166
a, 1.074797 0.183474  2.285986 0.2146019
MSEM = 13.8728295 MSE = 1.3136232
QELM =124469340 QL =60.31711222
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10 60

Fisher’s Information

11.29
11.29
11.29
11.29
11.29
.9853

-.90778

-.90778

Method of Moments
Covariance Structure

2.056

1.222 1.9842

1.210 1.1634 1.945

1.223 1.2689 1.166 2.086

1.213 1.2033 1.167 1.222 1.949
7.610 7.3565 7.232 7.709 7.333 49.24

Information Inverse

12301 04016 .. ... 26463
04016 .12301

o 12301
126463 .04016 2.2338]

Maximum Likelthood
Covanance Structure

.2401

.0968 .2347

0944 .0909 .2260

0972 .0968 .0877 .2332

.0976 .0980 .0881 .0914 .2281
.6347 6131 5841 .6212 .6067 4.8

BIASM BIAS MSEM MSE

a; 1.394611 0.203828  4.00442 0.2816740

a, 1.383026 0.205197  3.89698 0.2768250

a, 1.378675 0.198051  3.84595 0.2652151

a, 1.380749 0.199832  3.99241 0.2733169

o 1.381548 0.200946  3.85799 (.2684726

a, 7.250609 6.082229 101.81507 6.0822289
MSEM = 12]1.4128] MSE = 7.4477325
QELM = 169.84660 QEL = 74.8955841
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a, o, a; a; O U, m n

111 3 3 3 10 60
Fisher's Information Information Insverse
10.92 -72916 1265 0407 0467 0 L
10.92 0307 1265 0407 147374
10.92 0407 .0407 (1265
2.486 . . 545534 534
2.4%6 L 1473740 534 845 .53
-.72916 2486 L. 534 533 845
Mecthod of Moments Maximum Likelihood
Covanance Structure Covariance Structu:
2211 2296
1.352 2.1%05 L0931 .2498
1.428 1.305] 2.285 0925 .0932 2475
4.989 4.7342 4947 19.97 3397 3551 3415 1.82¢
4.718 4.5615 4.684 16.58 15.61 3215 .3423 3179 1.216 7
4,924 3.6910 4.81517.07 16.41 19.19 3368 3546 3391 1.272 1.215 1.8
BIASM BIAS MSEM MSE
a, 1.391406 (0.202547 414743  (0.2706460
a, 1.387812 0.205158  4.10649 (.2931731
a, 1.390962  (.205864  4.21970  (.2898637
a, 4.333136  0.673500 38.75343 2.2733703
o 4269258 0.649777 36.84389 2.1189765
a 4345345 (0.682773 3827363 2.2626982
MSEM = 126.34657 MSEE = 7.508727
QLILM = 192.0615]) QFI. = 94.7842%9
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DIRICHLET-NEGATIVE MULTINOMIAL TABLES

a, a, m n
1 3 10 30
Mecthod of Moments  Maximum Likelihood Fisher's Fisher's

Covanance Matnx Covanance Matnx  Information Inverse

23209 6.7355 1.3750  4.2060 10.71 -2.604  .239 (1.601
6.7355 33.2497 4.2090 18.9501 -2.60 1.037 601 2.474

BIASM BIAS MSEM MSE

a, 1.396165 0.483078 4.270152 1.61031S8

a, 4.011426 1.791021 49.34]1280 22.1579009
MSEM = 53.611432 MSE = 23.768220
QLLM = 48.274695 QEL = 29.400234

a, a, m n

1 3 40 30

Mcthod of Moments  Maximum Likelthood  Fisher's Fisher's
Covariance Matnx Covanance Matnx  Information  Inverse

0.1839  0.4094 0.0823 0.2195 42.86 -10.42 060 0.150
0.4094 1.6422 0.2195 09222 -10.417 4,149 150 0.618

BIASM BIAS MSEM MSE

a, 0.511964 0.077721  0.446043 0.0883497

a, 1.242014 0.292713  3.184778 1.0078931
MSLEM = 3.63082 MSE = 1.096243
QEIM = 79.22263 QEL = 67.379283
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a, a, m n
1 5 10 a0
Method of Moments  Maximum Likelhhood  Fisher's Fisher's
Covariance Matnx Covarnance Matrix Information Inverse
3.0969 15.820% 1.9116 10.1158 10.487 -1.57  0.2899 1.2976
15.8208 115.0248 10.1158 73.1788 -1.572 0.351  1.2976 8.6557
BIASM BIAS MSEM MSE
a, 1.239984 0.573918 4.634425 22432696
a, 6.766865 3.659899 160.815227 8(.5736542
MSEM = 156.4496 MSE = 88.816923
QELM = 89.2794 QLEL = 53.809407
a, Q, m n
1 3 40 30
Method of Moments  Maximum Likelthood  Fisher’s Fisher's
Covariance Mutnix Covanance Matnx Information Inverse

0.2066  0.94%6
0.9496  5.9745

41949 -6.29 0.0725 32440

0.1074 0.5715
-6.289 1.405 0.3244 2.1639

0.5175 3.5226

MSEM MSE

BIASM BIAS
0.3251636 0.1171760

0.344309 0.098942

a

u; 1.657210 0.597938 8.7208346 3.8501412
MSEM = 9.04599 MSE = 3.9973172
QELM = 69.64925 QFEL =65.9877250
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a, o, a, m n
3 3 3 10 30
Method of Moments Maximum Likclihood  Fisher's Fisher's

Covanance Matrix

Covuniance Matnx [nformaton Inverse

11.891 8.646 7.3191
8.646 11.07 7.1624
7.319 7.163 $§.9517

34172861 2824 245-1.02-1.02 923 635 .6051
28613471 2812 21022452 -1.02 635 .923 6951
282428123438 -1.02-1.022.622 605 .605 .8513

BIASM BIAS MSEM MSE

a, 31989816 0887277 27.810048  4.204708%6

a, 3927451 0873922 26.493368 4.1745338

ay 3.072373 0.870821 18.391223 4.1963659
MSEM = 72.694639 MSE = 12.575608
QLEIL.M =107.797086 QL = 64.542774

a, a, a; m n

I3 5 40 10

Mcthod of Moments Maximum Likelihood Fisher’s Fisher’s

Covanance Matnx

Covanance Matrix  Information  Inverse

0.226 0.523 0.8543
0.523 2.202 3.0777
0.854 3.077 5.2502

a
a,
as

0.122 0.295 0.485 30.72-3.19 -3.19 .076 .161 .2611
0.265 1.167 1.685 -3.19 6.668 -3.19 .161 .657 .89R2
0.485 1.685 2988 -3.19-3.19 2.906 .261 .89% 1.617

BIASM BIAS MSEM MSE
0.401361 0.111901 0.3870097 0.134638]
1.252126 0.367740 3.7695374 1.3020395
1.820276 0.601499 8.5636105 3.3473450

MSEM = 12.720158 MSLE = 4780227
QELM =157.781792 QFL =151.413406
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a, a, a; 0, a5 a, m n
P11 115 10 10
Fisher’s Information Information Inverse
7.7653 -0.71235 20614 .08818 .. .0SS818 .490359
7.7653 08818 20614  .0S818 .49059
7.7653 . )
7.7653 . . . .
7.7653 08818 08%18 .20614 49059
-0.71235 0.81150 149059 .49059 ........ 3.38551
Method of Moments Maximum Likelihood
Covariance Structure Covanance Structure
127.6 2.462
103.0 138.50 2.049 2.364
90.3 §9.87 103.3 2.618 2556 3.621
99.9 99.78 90.7 124.2 1.573 1.524 1925 1.712
95.4 9502 §7.5 93.8111.6 3.642 3.471 4.537 2.254 7.524
436.8 447.59 404.9 446.2 411.5 2054, 17.21 16.64 21.57 12.06 31.3 146
BIASM BIAS MSEM NMSE
ol 5.930699 0.444315 162.82029 2.6592233
a, 5.771361 0.413110 171.86984 2.5647757
ay 5.736776 0.436712 136.22782 3.8115527
a, 5.856497 0.414522 158.52570 1.8840746
ag 5.856497 0.443810 144.12501 7.7205665
a, 25436602 2.407225 2701.14373 151.8331676
MSEM = 3473.71240 MSE = 170.473361
QELM = 2313.20929 QEL = 129.862213
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JACKKNIFE RESULTS (DIRICHLET-MULTINOMIAL TABLES k=2)

a, a, m n
1 1 10 40
Biases
JMLE MLE
a, -0.2265 4275
a, -0.2248 4161

Mecan Squared Error

JMLE MLE
a, 0.3729 1.324
a, 0.3550 1.153
Q, a, m n
)| 5 10 40

Biases

JMLE MLE
a, -0.4358 0.5030
a, -2.4852 3.1318

Mean Squared Error

IMLE MLE
a, 0.3714 1.743
a, 10.9462 63.054
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Qa, ay m n
0.5 I 10 10
Biases
JMLE MLE
Q, -0.2040 242§
a, -0.4619 6049
Mean Squared Error
IMLE MLE
a, 0.0800 0.4546
a, 0.4322 3.1011
a, a, m n
0.5 0.5 10 10
Biases
JMILE MLE
a, -0.1668 0.1963
a, -0.1663 0.1953
Mean Squared Error
JMLE MLE
a, 0.0798 0.3839
a, 0.0801 0.3605
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